The Beta-Hyperbolic Secant Distribution
نویسندگان
چکیده
The shape of a probability distribution is often summarized by the distribution’s skewness and kurtosis. Starting from a symmetric “parent” density f on the real line, we can modify its shape (i.e. introduce skewness and in-/decrease kurtosis) if f is appropriately weighted. In particular, every density w on the interval (0, 1) is a specific weighting function. Within this work, we follow up a proposal of Jones (2004) and choose the Beta distribution as underlying weighting function w. “Parent” distributions like the Studentt, the logistic and the normal distribution have already been investigated in the literature. Based on the assumption that f is the density of a hyperbolic secant distribution, we introduce the Beta-hyperbolic secant (BHS) distribution. In contrast to the Beta-normal distribution and to the Beta-Student-t distribution, BHS densities are always unimodal and all moments exist. In contrast to the Beta-logistic distribution, the BHS distribution is more flexible regarding the range of skewness and leptokurtosis combinations. Moreover, we propose a generalization which nests both the Beta-logistic and the BHS distribution. Finally, the goodness-of-fit between all above-mentioned distributions is compared for glass fibre data and aluminium returns. Zusammenfassung: Die Gestalt einer Verteilung wird häufig zusammengefasst durch Schiefe und Kurtosis beschrieben. Wir starten mit einer symmetrischen “Eltern” Dichte f auf der reellen Achse und modifizieren ihre Gestalt (d.h. wir führen Schiefe ein und vergrößern/verkleinern die Kurtosis) indem f passend gewichtet wird. Insbesondere ist jede Dichte w auf dem reellen Intervall (0, 1) eine bestimmte Gewichtsfunktion. In dieser Arbeit folgen wir einem Vorschlag von Jones (2004) und wählen die Betaverteilung als zugrunde liegende Gewichtsfunktion w. “Eltern” Verteilungen wie die Student-t, die logistische und die Normalverteilung sind bereits in der Literatur untersucht worden. Wir nehmen an, dass f die Dichte einer Hyperbolische Schrankenverteilung ist, und führen so die Beta-Hyperbolische Schranken (BHS) Verteilung ein. Im Gegensatz zur Betanormal Verteilung und zur Beta-Student-t Verteilung sind BHS Dichten immer unimodal und alle Momente existieren. Im Gegensatz zur Beta-logistischen Verteilung ist die BHS Verteilung flexibler betreffs dem Bereich von Schiefe und Leptokurtosis Kombinationen. Zudem schlagen wir eine Verallgemeinerung vor, die sowohl die Beta-logistische als auch die BHS Verteilung enthält. Schließlich wird die Anpassungsgüte aller erwähnten Verteilungen für Glasfaser-Daten und Aluminiumpreise verglichen.
منابع مشابه
The Beta-Hyperbolic Secant (BHS) Distribution
The shape of a probability distribution is often summarized by the distribution’s skewness and kurtosis. Starting from a symmetric ”parent” density f on the real line, we can modify its shape (i.e. introduce skewness and in-/decrease kurtosis) if f is appropriately weighted. In particular, every density w on the interval (0, 1) is a specific weighting function. Within this work, we follow up a ...
متن کاملTwo-sample scale rank procedures optimal for the generalized secant hyperbolic distribution
There are many linear rank tests for the two-sample dispersion problem presented in literature. However just a few of them, the simplest ones, are commonly used. These common tests are not efficient for many practical distributions and thus other simple tests need to be developed to serve a wider range of distributions. The generalized secant hyperbolic distribution, proposed by Vaughan in [9],...
متن کاملA meshless technique for nonlinear Volterra-Fredholm integral equations via hybrid of radial basis functions
In this paper, an effective technique is proposed to determine thenumerical solution of nonlinear Volterra-Fredholm integralequations (VFIEs) which is based on interpolation by the hybrid ofradial basis functions (RBFs) including both inverse multiquadrics(IMQs), hyperbolic secant (Sechs) and strictly positive definitefunctions. Zeros of the shifted Legendre polynomial are used asthe collocatio...
متن کاملSkew Generalized Secant Hyperbolic Distributions: Unconditional and Conditional Fit to Asset Returns
A generalization of the hyperbolic secant distribution which allows for both skewness and leptokurtosis was given by Morris (1982). Recently, Vaughan (2002) proposed another flexible generalization of the hyperbolic secant distribution which has a lot of nice properties but is not able to allow for skewness. For this reason, Fischer and Vaughan (2002) additionally introduced a skewness paramete...
متن کاملOn random variate generation for the generalized hyperbolic secant distributions
Natural exponential families of distributions have probability mass functions of the form [exp(Ox)]#(dx) where # is a given measure, and 0 > 0 is a parameter. When we compute the mean and the variance, and force the variance to be a quadratic function of the mean as 0 is varied, the number of families becomes severely restricted. Morris (1982) showed that there are in fact only six natural expo...
متن کامل